Inter-Egg Correlation, Analysis Scripts

The primary analysis of the inter-egg correlations is accomplished with several scripts written by Doug Mast. This page documents the scripts and provides access to the actual code that implements the intended analysis, allowing completely unambiguous interpretation. The scripts may be used by anyone who wishes to perform similar or related analyses.

README -- Doug's notes on what the files contain


These are the scripts used in my initial inter-egg correlation study.  The
contents of each file are as follows:

pcint (Mathematica) --- script that computes correlation-coefficient
                        thresholds for each significance level.
readegg.m (Matlab)  --- downloads ASCII data from noosphere with wget,
                        computes correlations for a single day, and
                        stores summarized results.  called from Matlab by
                        readegg(month, day, year, controlflag), where
                        controlflag is 0 for synchronous, 1 for my original
                        control, and 2 (or anything else) for my second
                        control.  the two controls use different random seeds.
parseegg.sed        --- sed commands used within readegg.m to translate the 
                        ASCII data from noosphere into Matlab-readable form.
readeggmult.m       --- matlab script to call readegg.m for multiple days
summarizeegg.m      --- matlab script to sum stored results for all days 
                        (need to change a flag to do summary for control #2).
eggintsk.nb         --- Mathematica notebook file that computes p-values for 
                        the summarized results.  (includes results)

FWIW, I used Matlab 5.2, Mathematica 3.0, GNU sed 3.02, and GNU wget 1.5.3, 
all running on Linux/Intel.

All of the files are fairly ugly, and the integration is poor---I'd call 
them "research quality" rather than "production quality" code.  Feel free to 
run these programs, ask questions, find bugs, make improvements, etc. etc. 

Doug Mast (mast@sabine.acs.psu.edu)
State College, PA
April 22, 2000 

readegg.m


function readegg(month,day,year,controlflag);
cd /home/work3/egg;

dateint=month*1e6+day*1e4+year;

% only download data for synchronous runs (always do synchronous runs
% before control runs!)

if(controlflag~=1)

eval(['!wget -O eggdata.raw
"http://teilhard.global-mind.org/cgi-bin/eggdatareq.p
l?month=' num2str(month) '&year=' num2str(year) '&day=' num2str(day)
'&stime=00:
00:00&etime=23:59:59&gzip=no&idate=no"']);
eval(['!sed -f parseegg.sed eggdata.raw > eggdata.cooked']);

end

load eggdata.cooked;

eggvec=eggdata(1,:)       % vector with egg numbers for each data column

colstart=4;               % first three data columns are bookkeeping info
colstop=size(eggdata,2);
n=colstop-colstart+1;

if(controlflag==1)
  rand('state',dateint);    % for reproducibility, seed Matlab's pseudo-RNG 
                            % with date in integer form
else
  rand('state',floor(dateint/277));
end

% rsig(X) is Pearson correlation coefficient for confidence level 10^(-X)

nsiglevel=8;

rsig(1)=0.1678015; rsig(2)=0.2996953; 
rsig(3)=0.3911500; rsig(4)=0.4623388;
rsig(5)=0.5206954; rsig(6)=0.5699623;
rsig(7)=0.6123520; rsig(8)=0.6493093;

sigrec=zeros(colstop,colstop,nsiglevel+1);  % store who correlates with whom

nsamp=60;
ntry=0;

for i=1:nsiglevel
  nsig(i)=0;
end

numruns=24*3600/nsamp;
nsec=nsamp*numruns;

for irun=1:numruns

istart=(irun-1)*nsamp+2;
istop=istart+nsamp-1;

% for regular runs, correlate with signals at same time; for control runs,
% correlate with signals having random offsets

if (controlflag>=1)
  jstart=round(rand(1)*(nsec-nsamp))+2;
  jstop=jstart+nsamp-1;
else
  jstart=istart;
  jstop=istop;
end

for i=colstart:colstop

  itmp=i-colstart+1;
  isig=eggdata(istart:istop,i);

  for j=colstart:i-1

    jtmp=j-colstart+1; 
    jsig=eggdata(jstart:jstop,j);

    if((max(isig)<200) & (max(jsig)<200))
      rtmp=pearsonr(isig,jsig);
      ntry=ntry+1;
      sigrec(i,j,nsiglevel+1)=sigrec(i,j,nsiglevel+1)+1;    
                                          % sigrec(i,j,nsiglevel+1) = number
    else                                  % of tries for egg pair (i,j)
      rtmp=0;
    end

    for isiglevel=nsiglevel:-1:1

      if (rtmp > rsig(isiglevel))
        nsig(isiglevel)=nsig(isiglevel)+1;
        sigrec(i,j,isiglevel)=sigrec(i,j,isiglevel)+1;
      end
    end
  end
end

ntry
nsig     % view correlations as they accumulate

end

% write significance results to a file labeled by date and controlflag

filenameout=['results/results.' num2str(day) '-' num2str(month) '-'
num2str(year
) '.' num2str(controlflag) ];
fp=fopen(filenameout,'w');
fprintf(fp,'%d %d\n',dateint, nsamp);
fprintf(fp,'%d %d\n',controlflag, ntry);
for isiglevel=1:nsiglevel
  fprintf(fp,'%d %g\n',nsig(isiglevel), nsig(isiglevel)/ntry);
end
fclose(fp);

% also write a file saying who correlated with whom

filenameout=['results/sigrec.' num2str(day) '-' num2str(month) '-'
num2str(year)
 '.' num2str(controlflag)];
fp=fopen(filenameout,'w');
for i=colstart:n
  for j=colstart:i-1
     fprintf(fp,'\n%d %d %d ',eggvec(i),eggvec(j),sigrec(i,j,nsiglevel+1));
     for isiglevel=1:nsiglevel
       fprintf(fp,'%d ',sigrec(i,j,isiglevel));
     end
  end
end
fclose(fp);


readeggmult.m

year=1999;
monthlength=[31; 28; 31; 30; 31; 30; 31; 31; 30; 31; 30; 31];  

for month=1:12
 for day=1:monthlength(month)
   readegg(month,day,year,0);
   readegg(month,day,year,1);
   readegg(month,day,year,2);
 end
end

summarizeegg.m

clear;
cd /home/work3/egg;
year=1999;
monthstart=[1;1;1;1;1;1;1;1;1;1;1;1];
monthlength=[31; 28; 31; 30; 31; 30; 31; 31; 30; 31; 30; 31];  

nsiglevel=8;

ntry=0;
ntrycontrol=0;
nsig=zeros(1,nsiglevel);
nsigcontrol=zeros(1,nsiglevel);

for month=1:2
for day=1:monthlength(month)

   controlflag=0;
   filenamein=['results/results.' num2str(day) '-' num2str(month) '-'
num2str(ye
ar) '.' num2str(controlflag)];
   eval(['load ' filenamein]); 
   ntry=ntry+results(2,2);
   for siglevel=1:nsiglevel
      nsig(siglevel)=nsig(siglevel)+results(siglevel+2,1);
   end

   controlflag=1;
   filenamein=['results/results.' num2str(day) '-' num2str(month) '-'
num2str(ye
ar) '.' num2str(controlflag) ];
   eval(['load ' filenamein]); 
      ntrycontrol=ntrycontrol+results(2,2);
   for siglevel=1:nsiglevel
      nsigcontrol(siglevel)=nsigcontrol(siglevel)+results(siglevel+2,1);
   end

end
end

ntry
nsig
ntrycontrol
nsigcontrol
syncresults=nsig/ntry.*[1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10]
controlresults=nsigcontrol/ntrycontrol.*[1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10]

parseegg.sed

1,8d
s/"gmtime"/ 888 /g
s/,,,,$/ 999 999 999 999 /g
s/,,,$/ 999 999 999 /g
s/,,$/ 999 999 /g
s/,$/ 999 /g
s/,,,,,/ 999 999 999 999 /g 
s/,,,,/ 999 999 999 /g 
s/,,,/ 999 999 /g 
s/,,/ 999 /g
s/,/ /g

pcint

nu=n-2;
pr=1/Sqrt[Pi] Gamma[(nu+1)/2]/Gamma[nu/2] (1-x^2)^(0.5(nu-2));
pc[n_,r_]=Integrate[pr,{x,r,1}];
x8 = x /. N[FindRoot[10^8 pc[60,x]==1,{x,.64,.66}, MaxIterations -> 10000],7]
x7 = x /. N[FindRoot[10^7 pc[60,x]==1,{x,.61,.62}, MaxIterations -> 10000],7]
x6 = x /. N[FindRoot[10^6 pc[60,x]==1,{x,.56,.58}, MaxIterations -> 10000],7]
x5 = x /. N[FindRoot[10^5 pc[60,x]==1,{x,.520695,.520697}, MaxIterations -> 10000],7]
x4 = x /. N[FindRoot[10^4 pc[60,x]==1,{x,.46233,.46234}, MaxIterations -> 10000],7]
x3 = x /. N[FindRoot[10^3 pc[60,x]==1,{x,.3911504,.3911505}, MaxIterations -> 10000],7]
x2 = x /. N[FindRoot[10^2 pc[60,x]==1,{x,.2996952,.2996953}, MaxIterations -> 10000],7]
x1 = x /. N[FindRoot[10^1 pc[60,x]==1,{x,.1677,.1679}, MaxIterations -> 10000],7]

eggintsk.nb

(***********************************************************************

                    Mathematica-Compatible Notebook

This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook 
starts with the line of stars above.

To get the notebook into a Mathematica-compatible application, do one of 
the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the 
word CacheID, otherwise Mathematica-compatible applications may try to 
use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info@wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
***********************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[      9399,        386]*)
(*NotebookOutlinePosition[     10057,        410]*)
(*  CellTagsIndexPosition[     10013,        406]*)
(*WindowFrame->Normal*)



Notebook[{

Cell[CellGroupData[{
Cell[BoxData[
    \(\( (*\ 
      probability\ of\ a\ binary\ event\ with\ p = a\ occurring\ m\ times\n
      \t\ \ in\ a\ total\ of\ n\ trials\ *) \n\t\ 
    p[a_, m_, n_] = a^m\ *\ \((1 - a)\)^\((n - m)\) Binomial[n, m]\)\)], 
  "Input"],

Cell[BoxData[
    \(\((1 - a)\)\^\(\(-m\) + n\)\ a\^m\ Binomial[n, m]\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(\( (*\ Asymptotic\ form\ of\ Gamma\ function\ *) \n
    gammapprox[z_]\  = \ 
      Exp[\((z - 1/2)\)\ Log[z]\  - \ z\  + \ 1/2\ Log[2\ Pi]]; \n
     (*\ Continuous\ representation\ of\ p[]\ with\ asymptotic\ Gamma\ *) 
      p3[a_, m_, n_] = 
      a^m\ \((1 - a)\)^\((n - m)\)\ 
        gammapprox[n + 1]/\((gammapprox[m + 1]\ gammapprox[n - m + 1])\)\)\)],
   "Input"],

Cell[BoxData[
    \(\((1 - a)\)\^\(\(-m\) + n\)\ a\^m\ 
      E\^\(1 - \((1\/2 + m)\)\ Log[1 + m] + \((1\/2 + n)\)\ Log[1 + n] - 
          \((1\/2 - m + n)\)\ Log[1 - m + n] - 1\/2\ Log[2\ \[Pi]]\)\)], 
  "Output"]
}, Open  ]],

Cell[BoxData[
    \(\( (********************************************************) \n
     (*\(****************\)*\ SYNCHRONOUS\ RUNS\ ********************) \n
     (********************************************************) \)\)],
"Input"],

Cell[BoxData[
    \(\(ntry\  = \ 75828996; \)\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(p[10.^\(-8.\), 0., ntry*1.]\)], "Input"],

Cell[BoxData[
    \(General::"ovfl" \( : \ \) "Overflow occurred in computation."\)], 
  "Message"],

Cell[BoxData[
    \(General::"ovfl" \( : \ \) "Overflow occurred in computation."\)], 
  "Message"],

Cell[BoxData[
    \(0.468466835919241741`\ Binomial[7.58289960000000018`*^7, 0.`]\)], 
  "Output"]
}, Open  ]],

Cell[BoxData[
    \( (*\ Note : \ Binomial[Infinity, 0] = 1\ *) \)], "Input"],

Cell[BoxData[""], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p3[10.^\(-7\), n, ntry], {n, 8., 250.}]\)], "Input"],

Cell[BoxData[
    \(0.491324247417344839`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p3[10.^\(-6\), n, ntry], {n, 79, \ 400}]\)], "Input"],

Cell[BoxData[
    \(0.3733279040083351816687521`14.0215\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p3[10.^\(-5\), n, ntry], {n, 768, 1100}]\)], "Input"],

Cell[BoxData[
    \(0.36703154413308770567`8.0748\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-4\), n, ntry], {n, 7664, 9500}]\)], "Input"],

Cell[BoxData[
    \(0.175765050741960093`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-3\), n, ntry], {n, 75838, 82000}]\)], "Input"],

Cell[BoxData[
    \(0.486711102688612129`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-2\), n, ntry], {n, 759343, 810000}]\)], "Input"],

Cell[BoxData[
    \(0.112129060978604599`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-1\), n, ntry], {n, 7586446, 8100000}]\)], "Input"],

Cell[BoxData[
    \(0.0873135743600234803`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(\(\n (**************************************************)  (*
      \(****************\)*\ CONTROL\ RUNS\ ******************) \n
     (**************************************************) \)\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(\(ntry\  = 75817363; \)\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(p[10.^\(-8.\), 0., ntry*1.]\)], "Input"],

Cell[BoxData[
    \(General::"ovfl" \( : \ \) "Overflow occurred in computation."\)], 
  "Message"],

Cell[BoxData[
    \(General::"ovfl" \( : \ \) "Overflow occurred in computation."\)], 
  "Message"],

Cell[BoxData[
    \(0.468521335836736874`\ Binomial[7.5817363000000002`*^7, 0.`]\)], 
  "Output"]
}, Open  ]],

Cell[BoxData[
    \( (*\ Note : \ Binomial[Infinity, 0] = 1\ *) \)], "Input"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \( (*\ since\ we\ have\ only\ 3\ points, \ use\ exact\ form\ here\ *) \)],
   "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(p[10.^\(-7.\), 0, ntry] + p[10^\(-7.\), 1, ntry] + 
      p[10^\(-7.\), 2, ntry]\)], "Input"],

Cell[BoxData[
    \(0.0190226652699526539`\)], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p3[10.^\(-6\), n, ntry], {n, 0, 71}]\)], "Input"],

Cell[BoxData[
    \(0.315547399649562132`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p3[10.^\(-5\), n, ntry], {n, 400, 701}]\)], "Input"],

Cell[BoxData[
    \(0.018829458907462366024`8.0748\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-4\), n, ntry], {n, 7590, 9500}]\)], "Input"],

Cell[BoxData[
    \(0.46144543290729505`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-3\), n, ntry], {n, 75889, 95000}]\)], "Input"],

Cell[BoxData[
    \(0.397100325073510429`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-2\), n, ntry], {n, 700000, 757050}]\)], "Input"],

Cell[BoxData[
    \(0.0973030180175987702`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-1\), n, ntry], {n, 7581793, 9500000}]\)], "Input"],

Cell[BoxData[
    \(0.491320943806868726`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(\(\n (***********************************************************)  (*
      \(**\ CONTROL\)\ \(RUNS\ --\) - \ 
        take\ two\ with\ different\ random\ seed\ **) \n
     (***********************************************************) \)\)], 
  "Input"],

Cell[BoxData[
    \(\(ntry\  = 75816521; \)\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(1 - 
      \((p[10.^\(-8.\), 0, 75816521]\  + \ p[10.^\(-8.\), 1, 75816521])\)\)], 
  "Input"],

Cell[BoxData[
    \(0.176255146885582298`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \( (*\ Note : \ Binomial[Infinity, 0] = 1\ *) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(\(p[10.^\(-7\), 7, ntry]\  + \ p[10.^\(-7\), 6, ntry]\  + \ 
      p[10.^\(-7\), 5, ntry]\  + \ p[10.^\(-7\), 4, ntry]\  + \ 
      p[10.^\(-7\), 3, ntry]\  + \ p[10.^\(-7\), 2, ntry]\  + \ 
      p[10.^\(-7\), 1, ntry]\  + \ p[10.^\(-7\), 0, ntry]\ \)\)], "Input"],

Cell[BoxData[
    \(0.512711944286095899`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(1 - Sum[p3[10.^\(-6\), n, ntry], {n, 0, 81}]\)], "Input"],

Cell[BoxData[
    \(0.25256473676796487`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p3[10.^\(-5\), n, ntry], {n, 500, 745}]\)], "Input"],

Cell[BoxData[
    \(0.32452262701933749025`8.0748\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-4\), n, ntry], {n, 6000, 7515}]\)], "Input"],

Cell[BoxData[
    \(0.22222175126913366`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-3\), n, ntry], {n, 70000, 75336}]\)], "Input"],

Cell[BoxData[
    \(0.0402965781885019236`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-2\), n, ntry], {n, 700000, 757208}]\)], "Input"],

Cell[BoxData[
    \(0.134600872898465895`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[p3[10.^\(-1\), n, ntry], {n, 7583367, 7700000}]\)], "Input"],

Cell[BoxData[
    \(0.255741503568320638`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(Sum[p[.5, n, 16], {n, 10, 16}]\)], "Input"],

Cell[BoxData[
    \(0.2272491455078125`\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(p[.5, 7, 8]\)], "Input"],

Cell[BoxData[
    \(0.03125`\)], "Output"]
}, Open  ]]
},
FrontEndVersion->"X 3.0",
ScreenRectangle->{{0, 1152}, {0, 900}},
CellGrouping->Manual,
WindowSize->{520, 600},
WindowMargins->{{155, Automatic}, {Automatic, 69}}
]


(***********************************************************************
Cached data follows.  If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of 
the file.  The cache data will then be recreated when you save this file 
from within Mathematica.
***********************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{

Cell[CellGroupData[{
Cell[1731, 51, 239, 5, 59, "Input"],
Cell[1973, 58, 83, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2093, 64, 391, 8, 91, "Input"],
Cell[2487, 74, 215, 4, 35, "Output"]
}, Open  ]],
Cell[2717, 81, 238, 3, 59, "Input"],
Cell[2958, 86, 58, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[3041, 91, 60, 1, 27, "Input"],
Cell[3104, 94, 99, 2, 23, "Message"],
Cell[3206, 98, 99, 2, 23, "Message"],
Cell[3308, 102, 98, 2, 29, "Output"]
}, Open  ]],
Cell[3421, 107, 77, 1, 27, "Input"],
Cell[3501, 110, 26, 0, 27, "Input"],

Cell[CellGroupData[{
Cell[3552, 114, 76, 1, 27, "Input"],
Cell[3631, 117, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3723, 123, 77, 1, 27, "Input"],
Cell[3803, 126, 69, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3909, 132, 77, 1, 27, "Input"],
Cell[3989, 135, 63, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4089, 141, 85, 1, 27, "Input"],
Cell[4177, 144, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4269, 150, 87, 1, 27, "Input"],
Cell[4359, 153, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4451, 159, 89, 1, 27, "Input"],
Cell[4543, 162, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4635, 168, 91, 1, 27, "Input"],
Cell[4729, 171, 56, 1, 27, "Output"]
}, Open  ]],
Cell[4800, 175, 222, 3, 75, "Input"],

Cell[CellGroupData[{
Cell[5047, 182, 56, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[5128, 187, 60, 1, 27, "Input"],
Cell[5191, 190, 99, 2, 23, "Message"],
Cell[5293, 194, 99, 2, 23, "Message"],
Cell[5395, 198, 97, 2, 29, "Output"]
}, Open  ]],
Cell[5507, 203, 77, 1, 27, "Input"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5621, 209, 104, 2, 27, "Input"],

Cell[CellGroupData[{
Cell[5750, 215, 113, 2, 27, "Input"],
Cell[5866, 219, 56, 1, 27, "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{
Cell[5971, 226, 73, 1, 27, "Input"],
Cell[6047, 229, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6139, 235, 76, 1, 27, "Input"],
Cell[6218, 238, 64, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6319, 244, 85, 1, 27, "Input"],
Cell[6407, 247, 54, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6498, 253, 87, 1, 27, "Input"],
Cell[6588, 256, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6680, 262, 89, 1, 27, "Input"],
Cell[6772, 265, 56, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6865, 271, 91, 1, 27, "Input"],
Cell[6959, 274, 55, 1, 27, "Output"]
}, Open  ]],
Cell[7029, 278, 274, 5, 75, "Input"],
Cell[7306, 285, 56, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[7387, 290, 114, 3, 27, "Input"],
Cell[7504, 295, 55, 1, 27, "Output"]
}, Open  ]],
Cell[7574, 299, 77, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[7676, 304, 285, 4, 59, "Input"],
Cell[7964, 310, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8056, 316, 77, 1, 27, "Input"],
Cell[8136, 319, 54, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8227, 325, 76, 1, 27, "Input"],
Cell[8306, 328, 63, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8406, 334, 85, 1, 27, "Input"],
Cell[8494, 337, 54, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8585, 343, 87, 1, 27, "Input"],
Cell[8675, 346, 56, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8768, 352, 89, 1, 27, "Input"],
Cell[8860, 355, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8952, 361, 91, 1, 27, "Input"],
Cell[9046, 364, 55, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[9138, 370, 63, 1, 27, "Input"],
Cell[9204, 373, 53, 1, 27, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[9294, 379, 44, 1, 27, "Input"],
Cell[9341, 382, 42, 1, 27, "Output"]
}, Open  ]]
}
]
*)




(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)

You can return to the inter-egg correlation page by clicking here.


GCP Home